Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Commun ; 14(1): 1299, 2023 03 09.
Article in English | MEDLINE | ID: covidwho-2264553

ABSTRACT

mRNA-based vaccines dramatically reduce the occurrence and severity of COVID-19, but are associated with rare vaccine-related adverse effects. These toxicities, coupled with observations that SARS-CoV-2 infection is associated with autoantibody development, raise questions whether COVID-19 vaccines may also promote the development of autoantibodies, particularly in autoimmune patients. Here we used Rapid Extracellular Antigen Profiling to characterize self- and viral-directed humoral responses after SARS-CoV-2 mRNA vaccination in 145 healthy individuals, 38 patients with autoimmune diseases, and 8 patients with mRNA vaccine-associated myocarditis. We confirm that most individuals generated robust virus-specific antibody responses post vaccination, but that the quality of this response is impaired in autoimmune patients on certain modes of immunosuppression. Autoantibody dynamics are remarkably stable in all vaccinated patients compared to COVID-19 patients that exhibit an increased prevalence of new autoantibody reactivities. Patients with vaccine-associated myocarditis do not have increased autoantibody reactivities relative to controls. In summary, our findings indicate that mRNA vaccines decouple SARS-CoV-2 immunity from autoantibody responses observed during acute COVID-19.


Subject(s)
Autoimmune Diseases , COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Vaccines, Synthetic , mRNA Vaccines , Humans , Antibodies, Viral/immunology , Autoantibodies/immunology , Autoimmune Diseases/immunology , Autoimmunity/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Drug-Related Side Effects and Adverse Reactions/immunology , Immunity, Humoral/immunology , Myocarditis/immunology , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , mRNA Vaccines/adverse effects , mRNA Vaccines/immunology , mRNA Vaccines/therapeutic use
2.
Sci Rep ; 12(1): 22175, 2022 12 22.
Article in English | MEDLINE | ID: covidwho-2186046

ABSTRACT

Sero-surveillance can monitor and project disease burden and risk. However, SARS-CoV-2 antibody test results can produce false positive results, limiting their efficacy as a sero-surveillance tool. False positive SARS-CoV-2 antibody results are associated with malaria exposure, and understanding this association is essential to interpret sero-surveillance results from malaria-endemic countries. Here, pre-pandemic samples from eight malaria endemic and non-endemic countries and four continents were tested by ELISA to measure SARS-CoV-2 Spike S1 subunit reactivity. Individuals with acute malaria infection generated substantial SARS-CoV-2 reactivity. Cross-reactivity was not associated with reactivity to other human coronaviruses or other SARS-CoV-2 proteins, as measured by peptide and protein arrays. ELISAs with deglycosylated and desialated Spike S1 subunits revealed that cross-reactive antibodies target sialic acid on N-linked glycans of the Spike protein. The functional activity of cross-reactive antibodies measured by neutralization assays showed that cross-reactive antibodies did not neutralize SARS-CoV-2 in vitro. Since routine use of glycosylated or sialated assays could result in false positive SARS-CoV-2 antibody results in malaria endemic regions, which could overestimate exposure and population-level immunity, we explored methods to increase specificity by reducing cross-reactivity. Overestimating population-level exposure to SARS-CoV-2 could lead to underestimates of risk of continued COVID-19 transmission in sub-Saharan Africa.


Subject(s)
COVID-19 , Malaria , Humans , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Antibodies, Viral , Cross Reactions , N-Acetylneuraminic Acid , Epitopes
3.
Nature ; 595(7866): 283-288, 2021 07.
Article in English | MEDLINE | ID: covidwho-1233713

ABSTRACT

COVID-19 manifests with a wide spectrum of clinical phenotypes that are characterized by exaggerated and misdirected host immune responses1-6. Although pathological innate immune activation is well-documented in severe disease1, the effect of autoantibodies on disease progression is less well-defined. Here we use a high-throughput autoantibody discovery technique known as rapid extracellular antigen profiling7 to screen a cohort of 194 individuals infected with SARS-CoV-2, comprising 172 patients with COVID-19 and 22 healthcare workers with mild disease or asymptomatic infection, for autoantibodies against 2,770 extracellular and secreted proteins (members of the exoproteome). We found that patients with COVID-19 exhibit marked increases in autoantibody reactivities as compared to uninfected individuals, and show a high prevalence of autoantibodies against immunomodulatory proteins (including cytokines, chemokines, complement components and cell-surface proteins). We established that these autoantibodies perturb immune function and impair virological control by inhibiting immunoreceptor signalling and by altering peripheral immune cell composition, and found that mouse surrogates of these autoantibodies increase disease severity in a mouse model of SARS-CoV-2 infection. Our analysis of autoantibodies against tissue-associated antigens revealed associations with specific clinical characteristics. Our findings suggest a pathological role for exoproteome-directed autoantibodies in COVID-19, with diverse effects on immune functionality and associations with clinical outcomes.


Subject(s)
Autoantibodies/analysis , Autoantibodies/immunology , COVID-19/immunology , COVID-19/metabolism , Proteome/immunology , Proteome/metabolism , Animals , Antigens, Surface/immunology , COVID-19/pathology , COVID-19/physiopathology , Case-Control Studies , Complement System Proteins/immunology , Cytokines/immunology , Disease Models, Animal , Disease Progression , Female , Humans , Male , Mice , Organ Specificity/immunology
4.
Cell Rep Med ; 2(5): 100288, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1213573

ABSTRACT

Individuals with coronavirus disease 2019 (COVID-19) frequently develop neurological symptoms, but the biological underpinnings of these phenomena are unknown. Through single-cell RNA sequencing (scRNA-seq) and cytokine analyses of cerebrospinal fluid (CSF) and blood from individuals with COVID-19 with neurological symptoms, we find compartmentalized, CNS-specific T cell activation and B cell responses. All affected individuals had CSF anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies whose target epitopes diverged from serum antibodies. In an animal model, we find that intrathecal SARS-CoV-2 antibodies are present only during brain infection and not elicited by pulmonary infection. We produced CSF-derived monoclonal antibodies from an individual with COVID-19 and found that these monoclonal antibodies (mAbs) target antiviral and antineural antigens, including one mAb that reacted to spike protein and neural tissue. CSF immunoglobulin G (IgG) from 5 of 7 patients showed antineural reactivity. This immune survey reveals evidence of a compartmentalized immune response in the CNS of individuals with COVID-19 and suggests a role of autoimmunity in neurologic sequelae of COVID-19.

5.
J Exp Med ; 218(3)2021 03 01.
Article in English | MEDLINE | ID: covidwho-1024074

ABSTRACT

Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus on the consequences of CNS infections. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in infected and neighboring neurons. However, no evidence for type I interferon responses was detected. We demonstrate that neuronal infection can be prevented by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate SARS-CoV-2 neuroinvasion in vivo. Finally, in autopsies from patients who died of COVID-19, we detect SARS-CoV-2 in cortical neurons and note pathological features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV-2 and an unexpected consequence of direct infection of neurons by SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Blocking/chemistry , COVID-19 , Cerebral Cortex , Neurons , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cerebral Cortex/virology , Disease Models, Animal , Female , Humans , Male , Mice , Middle Aged , Neurons/metabolism , Neurons/pathology , Neurons/virology , Organoids/metabolism , Organoids/pathology , Organoids/virology
6.
Pediatr Infect Dis J ; 39(12): e454-e456, 2020 12.
Article in English | MEDLINE | ID: covidwho-892108

ABSTRACT

There is an urgent need for inexpensive, population-wide surveillance testing for COVID-19. We tested newborn dried blood spot (DBS) anti-SARS-CoV-2 antibodies for all infants born at Yale from March to May 2020, and found that newborn DBS serologies reflect maternal and population-wide infection rates during the study period. This suggests a role for DBS in COVID-19 surveillance in areas where viral testing is limited.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Dried Blood Spot Testing , SARS-CoV-2 , Age Factors , Antibodies, Viral/blood , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant, Newborn , Male , Public Health Surveillance , SARS-CoV-2/classification , Seasons , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL